LUCEAT LIA VESTRA	LOYOLA COLLEGE (AUTONOMOUS), CHEN SEMESTER EXAMINATION – NOVEMBI B.Sc. DEGREE EXAMINATION MT5409 – NUMERICAL METHODS	NAI – 600 034 ER 2015
Date: 14/11 /2015 Time: 9:00 – 12:00	Dept. No.	Max. : 100 Marks

SECTION – A

ANSWER ALL QUESTIONS:

(10 x 2 = 20)

 $(5 \times 8 = 40)$

- 1. Write Newton's formula to find a root of f(x) = 0.
- 2. State the condition for convergence in Newton Raphson Method.
- 3. What do you mean by transcendental equation?
- 4. Define Extrapolation.
- 5. What do you mean by partial pivoting?
- 6. Write Gauss Forward Interpolation formula.
- 7. Write Bessel's formula.
- 8. Define Numerical Differentiation.
- 9. Write the derivatives using Newton's backward difference formula.
- 10. Why Trapezoidal rule is said to have least accuracy?

SECTION – B

ANSWER ANY FIVE QUESTIONS:

11. Solve the system of equations 10x + y + z = 12, 2x + 10y + z = 13 and x + y + 5z = 7 using Cramer's rule.

- 12. Solve the following system of equations by Gauss Seidel method 10x + 2y + z = 9, x + 10y z = -22, -2x + 3y + 10z = 22.
- 13. Find a root of the equation $x^3 3x + 1 = 0$ lying between 1 and 2 correct to three places of decimal by using bisection method.
- 14. Solve by Lagrange's formula to find the value of y at x = 6 from the following data.

x	3	7	9	10
y	168	120	72	63
				1000330

- 15. Use Stirling's formula to find y_{35} given that $y_{10} = 600$, $y_{20} = 512$, $y_{30} = 439$, $y_{40} = 346$, $y_{50} = 243$.
- 16. Apply Bessel's formula to obtain y_{25} given that $y_{20} = 2854$, $y_{24} = 3162$, $y_{28} = 3544$, $y_{32} = 3992$.
- 17. Using Taylor's method solve $\frac{dy}{dx} = 1 + xy$ with $y_0 = 2$ and h = 0.1. Find y(0.1).
- 18. Solve $\frac{dy}{dx} = 1 y$, y(0) = 0 using Euler's method. Find y at x = 0.1 and x = 0.2. Compare the results with the exact solution.

SECTION - C

ANSWER ANY TWO QUESTIONS:

- $(2 \times 20 = 40)$
- 19. (a) Solve the following system of equations using Gauss Elimination method. x + y + z = 9, 2x - 3y + 4z = 13 and 3x + 4y + 5z = 40.

(b)Find an iterative formula to find \sqrt{N} , where N is a positive number. (15+5)

- 20. (a) Find a real root of the equation $x^3 2x 5 = 0$ by the method of false position correct to three decimal places.
 - (b) Evaluate $\int_{0}^{10} \frac{dx}{1+x^2}$ using Trapezoidal rule. (15+5)
- 21. (a) The following data gives the melting point of an alloy of zinc and lead, θ is the temperature and x is the percentage of lead. Using Newton's Interpolation formula find θ (i) when x = 48 (ii) θ when x = 84.

a per n x = x 4	40	50	60	70	80	90
θ	184	204	226	250	276	304

(20)

22. (a) Given $y' = x^2 - y$, y(0) = 1, find y(0.1), y(0.2) using Runge-Kutta methods of second order, third order and fourth order. (20)
