

Date: 14/11/2015
Time: 9:00-12:00

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

SEMESTER EXAMINATION - NOVEMBER 2015
B.Sc. DEGREE EXAMINATION

MT5409 - NUMERICAL METHODS

Dept. No. \square

Max. : 100 Marks

SECTION - A

ANSWER ALL QUESTIONS:

($10 \times 2=20$)

1. Write Newton's formula to find a root of $f(x)=0$.
2. State the condition for convergence in Newton Raphson Method.
3. What do you mean by transcendental equation?
4. Define Extrapolation.
5. What do you mean by partial pivoting?
6. Write Gauss Forward Interpolation formula.
7. Write Bessel's formula.
8. Define Numerical Differentiation.
9. Write the derivatives using Newton's backward difference formula.
10. Why Trapezoidal rule is said to have least accuracy?

SECTION - B

ANSWER ANY FIVE QUESTIONS:

$(5 \times 8=40)$
11. Solve the system of equations $10 x+y+z=12,2 x+10 y+z=13$ and $x+y+5 z=7$ using Cramer's rule.
12. Solve the following system of equations by Gauss - Seidel method $10 x+2 y+z=9, x+10 y-z=-22,-2 x+3 y+10 z=22$.
13. Find a root of the equation $x^{3}-3 x+1=0$ lying between 1 and 2 correct to three places of decimal by using bisection method.
14. Solve by Lagrange's formula to find the value of y at $x=6$ from the following data.

x	3	7	9	10
y	168	120	72	63

15. Use Stirling's formula to find y_{35} given that $y_{10}=600, y_{20}=512, y_{30}=439, y_{40}=346$, $y_{50}=243$.
16. Apply Bessel's formula to obtain y_{25} given that $y_{20}=2854, y_{24}=3162, y_{28}=3544$, $y_{32}=3992$.
17. Usirng Taylor's method solve $\frac{d y}{d x}=1+x y$ with $y_{0}=2$ and $h=0.1$. Find $y(0.1)$.
18. Solve $\frac{d y}{d x}=1-y, y(0)=0$ using Euler's method. Find y at $x=0.1$ and $x=0.2$. Compare the results with the exact solution.

SECTION - C

ANSWER ANY TWO QUESTIONS:

19. (a) Solve the following system of equations using Gauss Elimination method. $x+y+z=9$, $2 x-3 y+4 z=13$ and $3 x+4 y+5 z=40$.
(b)Find an iterative formula to find \sqrt{N}, where N is a positive number.
20. (a) Find a real root of the equation $x^{3}-\lambda x-5=0$ by the method of false position correct to three decimal places.
(b) Evaluate $\int_{0}^{10} \frac{d x}{1+x^{2}}$ using Trapezoidal rule.
21. (a) The following data gives the melting point of an alloy of zinc and lead, θ is the temperature and x is the percentage of lead. Using Newton's Interpolation formula find θ (i) when $x=48$ (ii) θ when $x=84$.

\cdots	40	50	60	70	80	90
$\ddot{\theta}$	184	204	226	250	276	304

22. (a) Given $y^{\prime}=x^{2}-y, y(0)=1$, find $y(0.1), y(0.2)$ using Runge-Kutta methods of second order, third order and fourth order.
